SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $1 / 71$	

Table of Contents

18ECL38: DIGITAL SYSTEM DESIGN LAB 2
A. LABORATORY INFORMATION 2

1. Lab Overview 2
2. Lab Content $\underline{2}$
3. Lab Material. 2
4. Lab Prerequisites: 3
5. General Instructions. 3
6. Lab Specific Instructions. 3
B. OBE PARAMETERS. 3
7. Lab / Course Outcomes 3
8. Lab Applications 4
9. Articulation Matrix 5
10. Mapping Justification
11. Curricular Gap and Content. 6
12. Content Beyond Syllabus. 6
C. COURSE ASSESSMENT. 6
13. Course Coverage 6
14. Continuous Internal Assessment (CIA) 7
D. EXPERIMENTS.
Experiment 01 : Structure of C program 7
Experiment 02 : Keywords and identifiers 8
Experiment 03 9
Experiment 04 : 9
[^0]EC

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date: $18-10-2019$
Title:	Course Lab Manual	Page: $2 / 71$

18ECL38 : DIGITAL ELECTRONICS LABORATORY

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	BE	Program:	EC
Year / Semester :	$2 / 3$	Academic Year:	$2019-20$
CourseTitle:	DIGITAL SYSTEM DESIGN LABORATORY	Course Code:	18ECL38
Credit / L-T-P:	$2 / 1-0-1$	SEE Duration:	180 Minutes
Total Contact Hours:	36 Hrs	SEE Marks:	60Marks
CIA Marks:	40	Assignment	$1 /$ Module
Course Plan Author:	Mrs Kiranmayi M	Sign	Dt :
Checked By:		Sign	Dt :

2. Lab Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	De-Morgan's law \&Boolean expression relization using logic gates	03	Demorgan's Theorem	L3 Understan d
2	FullAdderandSubtractor	03	Adder \&Subtractor	L4 Analyze
3	Parallel Adder/Subtractor using 7483	03	Parallel Adder/Subtract or	L5 Evaluate
4	Comparators	03	Comparators	L5
5	Multiplexer	03	MUX	L4
6	Demultiplexerand Decoder	03	DEMUXand Decoder	L4
7	Study of Flip-Flops	03	FlipFlopverification	L3
8	ShiftRegisters	03	ShiftRegisters	L3
9	RingCounter andJohnsonCounter	03	Ring/JohnsonC ounter	L3

EC

SKIT
Doc Code:
Title:

EC.SKIT.Ph5b1.F03

Rev No.: 1.0

Title: Course Lab Manual Date: 18-10-2019

Page: 3 / 71

10	Synchronous Counters	03	Counters	L3
11	Simulate Serial Adder using simulation tool.	03	Serial- Adder simulation	L 4
12	Simulate Binary Multiplier using simulation tool	03	Binary Multiplier	L4

3. Lab Material

Unit	Details	Available
1	Text books	L. Digital Logic Applications and Design, John M Yarbrough, Thomson Learning, 2001. ISBN 981-240-062-1.
	2. Donald D. Givone, "Digital Principles and Design", Mc Graw Hill, 2002. ISBN 978- $0-07-052906-9$.	
2	Reference books Lib	
	1. D. P. Kothari and J. S Dhillon, "Digital Circuits and Design", Pearson, 2016, ISBN:9789332543539.	In dept
	2. Morris Mano, -Digital design, Prentice Hall of India, Third Edition.	
	3. Charles H Roth, Jr., "Fundamentals of logic design", Cengage Learning.	
	4. K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5 th Edition, 2015, ISBN: $9788120351424 . ~$	
3	Others (Web, Video, Simulation, Notes etc.)	Not Available

4. Lab Prerequisites:

-	-	Base Course:	Topic / Description	-	-
SNo	Course Code	Course Name	Sem	Remarks	
1	18 ELN14	Basic Electronics	Knowledge on Digital electronics, boolean laws, basic gates	2	

EC

SKIT
Doc Code:

EC.SKIT.Ph5b1.F03
Teaching Process \quad Rev No.: 1.0

Title: Course Lab Manual Date:18-10-2019 Page: 4 / 71

			Knowledge of Filp-flops	-	Plan Gap Course

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the Experiment, certification/signof the concerned staff in-charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings /observations into the notebook while performing the experiment.	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified/signed bystaff member in-charge.
6	Should attempt all Experiments/ assignments given in the experimentlist session wise.	
7	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
8	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
9	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the logic diagrams, Truth table, expressions, simplification stepsand output for various inputs given	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1	Start writing the logic diagrams with the pin numbers	
2	Estimate the components required to perform the experiment (No. of	

EC

SKIT
Doc Code:
Title:

EC.SKIT.Ph5b1.F03

Teaching Process
Rev No.: 1.0

Title: Course Lab Manual Date:18-10-2019 Page: 5 / 71

	IC's, Pathcards)	
3	Use the trainer kit \&Make the connections as per Logic diagram	
4	Turn on the power supply and check for the output	
5	Check for the Errors in connection and correct it	
6	Notedown the inputand output valuesand compare with original truth table	
7	Perform the Experiment for different inputs	

B. OBE PARAMETERS

1. Lab / Course Outcomes

\#	COs	Teach. Hours	Concept	Instr Method	Assessment Method	Blooms' Level
1	Verify \&understandDe-Morgan's theorem expalize the boolean expression using logic gates	03	Demorgan's Theorem	Demons trate	Oral questions	
2	Analyze the full adder/subtractor logic using logic gates	03	Full Adder \& Subtractor	Demons trate	Oral question and realization	L4 Analyze
3	Design the parallel adder \&subtractor circuits and compare both the circuits	03	Parallel Adder/Subt ractor	Demons trate	Assignment and Slip Test	L5 Evaluat e
4	Evaluate the performance of 4-bit magnitude comparator using 7485 IC	03	Comparator s	Tutorial	Assignment	L5
5	Realize 4:1 mux \&8:1 mux and Analyze the both	03	MUX	Demons trate		L4
6	Realize 1:8 Demux \&3:8 Decoder using 74138 IC	03	DEMUXand Decoder	Tutorial	Assignment	L4
7	Realize the operation of clocked SR \&JK flip-flop.	03	FlipFlopverifica tion	Demons trate	Assignment and Slip Test	L3
8	Understand the operation of shift registers	03	ShiftRegiste rs	lecture	Assignment	L3
9	differentiate Ring counter \&Johnson	03	Ring/Johns	Demons	Assignment	L3

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 6/71	

| | Counter using 7476 IC | | onCounter | trate | | |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | Realize the 3 bit counters and verify
 with truth table | 03 | Counters | Demons
 trate | Oral
 questions | L3 |
| 11 | Analyze the Serial adder simulation
 process | 03 | Serial
 simulation | Simulati
 Assignment
 on | L4 | |
| 12 | Simulate the working of a Binary
 Multiplier | 03 | Binary
 Multiplier | Simulati
 on | Assignment | L4 |
| - | Total | $\mathbf{3 6}$ | - | - | - | - |

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level 1
2	Engineering - Building circuits,Set Theory - Venn diagrams, Java integrated in the calculators and At Networking side the Full adder is used mostly. Under stand		
3	CPLD applications and VHDL circuits and devices	L4 Analyz e	
4	Generally, in electronics, the comparatoris used to compare two voltages or currents	CO4	L5 Evalua te
5	Communication System for the process of data transmission.	CO5	L4
6	Communication System which converts multiplexed signals back to the original form/ wireless or wired media	CO6	L4
7	main components of sequential circuitsm, storing of binary data, counter, transferring binary data from one location to other	CO7	L3
8	Temporary data storage, Data transfer, Data manipulation And incounters.	CO8	L3
9	count the data in a continuous loop, used in frequency divider circuits, 3 phase square wave generator, BCD counter etc	CO9	L3
10	Alarm clock, Set an AC timer, Set a timer for taking picture, finite state machines etc	CO10	L3

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $7 / 71$	

11	Engineering - Building circuits,Set Theory - Venn diagrams	CO11	L4
12	dividers for clock signals,finite state machines etc	CO12	$\mathrm{L4}$

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes	Program Outcomes												
\#	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO1	PO1 1	PO1	Level
18ECL38.1	Verify \& understand De-Morgan's theorem \&realize the boolean expression using logic gates	3	2	2										L3
18ECL38.2	Analyze the full adder/subtractor logic using logic gates	3	2	2										L3
18ECL38.3	Design the parallel adder \&subtractor circuits and compare both the circuits	3	2	2										L3
18ECL38.4	Evaluate the performance of 4-bit magnitude comparator using 7485 IC	3	2	2										L3
18ECL38.5	Realize 4:1 mux \&8:1 mux and Analyze the both	3	2	2										L3
18ECL38.6	Realize 1:8 Demux \&3:8 Decoder using 74138 IC	3	2	2										L3
18ECL38.7	Realize the operation of clocked SR \&JK flip-flop.	3	2	2										L3
18ECL38.8	Understand the operation of shift registers	3	2	2										L3
18ECL38.9	differentiate Ring counter \&Johnson counter using 7476 IC	3	2	2										L3
18ECL38.10	Realize the 3 bit counters and verify with truth table	3	2	2										L3
18ECL38.11	Analyze the Serial adder simulation process	3	2	2		2								L3
18ECL38.12	Simulate the working of Binary Multiplier	3	2	2		2								L3
18ECL38	Average	3	2	2		2								

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

EC
Prepared by
Checked by

| SKIT | Teaching Process | Rev No.: 1.0 |
| :---: | :--- | :--- | :--- |
| Doc Code: | EC.SKIT.Ph5b1.F03 | Date:18-10-2019 |
| Title: | Course Lab Manual | Page: 8/71 |

Mapping		Mapping Level	Justification
CO	PO	-	-
CO1	PO1	L1	Basic knowledge of mathematics is essential to understand the combinatorial circuit design to build complex system like processor.
CO1	PO2	L2	Simple mathematical analysis is required to build complex system like micro-controllers using combinatorial logic.
CO1	PO3	L2	Strong foundation in designing and modeling of combinatorial logic circuits enables to provide design solutions for complex engineering problems like Arithmetic and logic units.
CO2	PO1	L1	Basic knowledge of mathematics is essential to design adder and subtractors which are used in building complex system like Digital signal processors and ASIC's.
CO2	PO3	L2	
CO2		Simple mathematical analysis is required to build complex system like DSP Processors using basic adder and subtractors.	
CO3	PO1	L1	Strong foundation in designing adder and subtractor circuits enables to provide design solutions for complex engineering problems like ASIC's and high speed processors.
CO4		PO3 knowledge of mathematics is essential to design adder and	
Subtractors which are used in building complex system like Digital			
signal processors and ASIC's.			

EC

	SKIT		Teaching Process	Rev No.: 1.0
	Doc Code	EC.SKIT.Ph5b1.F03		Date:18-10-2019
	Title:	Course Lab Manual		Page: 9 / 71

CO5	PO1	L1	Basic knowledge of mathematics is essential to design multiplexers which are used in building complex system like processor.
CO5	PO2	L2	Simple mathematical analysis is required to build complex system like micro-controllers using combinational circuits like multiplexers
CO5	PO3	L2	Strong foundation in designing combinational circuits enables to provide design solutions for complex engineering problems like Arithmetic and logic units.
CO6	PO1	L1	Basic knowledge of mathematics is essential to design decoders and de-multiplexers which are used in building complex system like processor.
CO6	PO 2	L2	Simple mathematical analysis is required to build complex system like micro-controllers using combinational circuits like decoders and de-multiplexers.
CO6	PO3	L2	Strong foundation in designing combinational circuits enables to provide design solutions for complex engineering problems like Arithmetic and logic units.
CO`7	PO1	L1	Basic knowledge of mathematics is essential to design flip-flop which are used in building complex system like memories.
CO7	PO2	L2	Simple mathematical analysis is required to build complex system like micro-controllers using basic flip flops.
CO7	PO3	L2	Strong foundation in designing flip-flop circuits enables to provide design solutions for complex engineering problems like memories.
CO8	PO1	L1	Basic knowledge of mathematics is essential to design shift registers which are used in building complex system like memories.
CO8	PO2	L2	Simple mathematical analysis is required to build complex system like micro-controllers using basic shift registers.
CO8	PO3	L2	Strong foundation in designing shift registers circuits enables to provide design solutions for complex engineering problems like memories.
CO9	PO1	L1	Basic knowledge of mathematics is essential to design counters which are used in building complex system in medical field like ECG counter.
CO9	PO2	L2	Simple mathematical analysis is required to build complex system like micro-controllers, timers using basic counters.

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $10 / 71$	

CO9	PO3	L2	Strong foundation in designing counter circuits enables to provide design solutions for complex engineering problems like timers and counters in processors and controllers.
CO10	PO1	L1	Basic knowledge of mathematics is essential to design counters which are used in building complex system in medical field like ECG counter.
CO10	PO2	L2	Simple mathematical analysis is required to build complex system like micro-controllers, timers using basic counters.
CO10	PO3	L2	Strong foundation in designing counter circuits enables to provide design solutions for complex engineering problems like timers and counters in processors and controllers.
CO11	PO1	L1	Basic knowledge of mathematics is essential to design adder and subtractors which are used in building complex system like Digital signal processors and ASIC's.
CO11	PO2	L2	Simple mathematical analysis is required to build complex system like DSP Processors using basic adder and subtractors.
CO11	PO5	L2	Strong foundation in designing adder and subtractor circuits enables to provide design solutions for complex engineering problems like ASIC's and high speed processors.
CO12	PO1	L1	Modern tool Multisim is used for designing the adder and subtractor circuits which can be used to model complex circuits used in building complex system like ASIC's and high speed processors.
Basic knowledge of mathematics is essential to design counters which			
are used in building complex system in medical field like ECG			
counter.			

Note: Write justification for each CO-PO mapping.

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $11 / 71$	

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

Note: Write Gap topics from A. 4 and add others also.
6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title	Teachin g Hours	No. of question in Exam							CO	Levels
			CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
1	De-Morgan's law \&Boolean expression relization using logic gates	03	1	-	-	-	-	-	1	CO 1	
2	FullAdderandSubtractor	03	1	-	-	-	-	-	1	CO 2	
3	Parallel Adder/Subtractor using 7483	03	1	-	-	-	-	-	1	CO3	
4	Comparators	03	1	-	-	-	-	-	1	CO4	
5	Multiplexer	03	1	-	-	-	-	-	1	CO5	
6	Demultiplexerand Decoder	03	1	-	-	-	-	-	1	C06	
7	Study of Flip-Flops	03	-	1	-	-	-	-	1	C07	
8	ShiftRegisters	03	-	1	-	-	-	-	1	C08	
9	RingCounter andJohnsonCounter	03	-	1	-	-	-	-	1	C09	
10	Counters	03	-	-	1	-	-	-	1	CO10	
11	Simulate Serial- Adder using simulation tool.	03	-	-	1	-	-	-	1	CO11	

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $12 / 71$	

12	Simulate Binary Multiplier using simulation tool.	03	-	-	1	-	-	-	1	CO12	
-	Total	$\mathbf{3 6}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{3}$				$\mathbf{1 2}$	-	-

Note: Write CO based on the theory course.
2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam-1	30	CO1, CO2, CO3, CO4	L23, L3
CIA Exam - 2	30	CO5, CO6, C07,	L1, L2, L3 . .
CIA Exam - 3	30	CO8, CO9	L1, L2, L3 . .
Assignment - 1	05	CO1, CO2, CO3, CO4	L2, L3, L4 ...
Assignment - 2	05	C05, C06, C07, CO8, C09	L1, L2, L3 ...
Assignment - 3	05	C08, CO 9	L1, L2, L3 ...
Seminar-1	05	CO1, CO2, CO3, CO4	L2, L3, L4 ...
Seminar-2	05	CO5, C06,C07,C08, C09	L2, L3, L4 . .
Seminar-3	05	C08, C09	L2, L3, L4 ...
Other Activities - define -Slip test		CO1 to Co9	L2, L3, L4 . .
Final CIA Marks	40	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	25 Marks
4	Internal Assessment	40 Marks
5	SEE	60 Marks
-	Total	$\mathbf{1 0 0}$ Marks

D. EXPERIMENTS

Experiment 01 : De-Morgan's law \& Boolean expression relization using logic gates

-	Experiment No.:	1	Marks	Date Planned	Date Conducted	
1	Title	De-Morgan's law \&Boolean expression relization using logic				

EC
Prepared by Checked by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $13 / 71$	

		gates
2	Course Outcomes	Verify \&understand De-Morgan's theorem \&realize the boolean expression using logic gates
3	Aim	To verify a) De-Morgan's theorem for 2-variables b) The Sum-of-Product and Product-of-sum expression using universal gates
4	Material / Equipment Required	Lab Manual IC 7408 (AND), IC 7404 (NOT), IC 7432 (OR), IC 7400 (NAND), IC7402 (NOR),IC 7486 (EX-OR)
5	Theory, \quad Formula, Principle, Concept	Given Problem: $Y=f A, B, C, D=\bar{A} B \bar{C} D+\bar{A} B C \bar{D}+\bar{A} B C D+A B \bar{C} D+A B C \bar{D}+A B C D$
6	Procedure	1.Verify that the gates areworking. 2.Constructa truth table for the given problem. 3.Draw a Karnaugh Mapcorresponding to the given truth table. 4.Simplify the given Boolean expressionmanuallyusing the Karnaugh Map. A:ImplementationUsing Logic Gates 5.Realizethe simplified expression using logic gates. 6. Connect $\mathrm{V}_{\text {cca }}$ andground as shown in the pin diagram. 7.Make connections as per the logic gate diagram. 8.Apply the different combinations of input according to the truth tables. 9.Check the output readings for the given circuits;check themagainst the truth tables.

EC

SKIT		Teaching Process	Ro.: 1.0
	Doc Code:	EC.SKIT.Ph5b1.FO3	Date:18-10-2019
Title:	Course Lab Manual	Page: $14 / 71$	

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $15 / 71$	

(

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $16 / 71$	

EC
Prepared by Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $17 / 71$	

路

EC
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $18 / 71$	

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $19 / 71$	

EC
Prepared by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019
Title:	Course Lab Manual	Page: $20 / 71$

EC
Prepared by Checked by Approved

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date: 18-10-2019
Title:	Course Lab Manual	Page: $21 / 71$

11	Application Areas	Engineering - Building circuits,Set Theory - Venn diagrams, Java
12	Remarks	
13	Faculty Signature with Date	

Experiment 02 : Full Adder and Subtractor

-	Experiment No.:	2	Marks	Date Planned	Date Conducted	
1	Title	FullAdderandSubtractor				
2	Course Outcomes	Analyze the full adder/subtractor logic using logic gates				
3	Aim	To realize half/fulladder and half/fullsubtractorusing Logic gates				
4	Material / EquipmentLLab Manual Required\quad IC 7408, IC 7432, IC 7486, IC 7404, etc.					
5	Theory, \quad Formula, Principle, Concept	l_{i-10} $S=A(A$ $C=$ Full D:	er: $\rightarrow B \mid C n-1$ tractor: $\mathrm{BOCn}-1$ $n+\overline{A \oplus}$			

EC

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date: 18 -10-2019
Title:	Course Lab Manual	Page: $22 / 71$

6	Procedure, Program, Activity, Algorithm, Pseudo Code	1.Verify that the gates areworking. 2.Make theconnections as per the circuitdiagramfor the fulladder circuit, on thetrainer kit. 3.SwitchontheVCCpowersupplyandapplythevariouscombinationso ftheinputs according tothe respective truth tables. 4.Note down the output readings for the full adder circuit for the corresponding combination ofinputs. 5.Verify that the outputs are accordingto the expected results. 6.Repeattheprocedureforfullsubtractor circuit. 7.Verifythatthesum/differenceandcarry/borrowbitsareaccordingtothee xpected values.
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Full Adder Using Logic Gates

EC
Prepared by
Checked by
Approved

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019
Title:	Course Lab Manual	Page: $23 / 71$

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 24/71	

EC
Prepared by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019
Title:	Course Lab Manual	Page: $25 / 71$

9	Sample Calculations	-
10	Results \&Analysis	Compare the output in the trainer kit with truth table
11	Application Areas	Integrated in the calculators and At Networking side the Full adder is used mostly.
12	Remarks	
13	Faculty Signature with	
	Date	

Experiment 03 : pARALLEL ADDER AND SUBTRACTOR USING 7483

-	Experiment No.:	3	Marks	Date Planned	Date Conducted	
1	Title	PARALLELADDER ANDSUBTRACTOR USING7483				
2	Course Outcomes	Design the parallel adder \&subtractor circuits and compare both the circuits				
3	Aim	TorealizeParallel Adder and Subtractor Circuits using IC 7483				
4	Material / Equipment Lab ManualRequiredIC 7483, IC 7486, etc.					
5	Theory, Formula, Principle, Concept					
6	Procedure,Program, Activity, Pseudo Code	1. the 2. 3. an Ou 4.1 5.1 th 6.	necton 7483. nectth rtS,COt btainth utCarry rderto dertoim ghXOR ly the	romA1toA4p to S4 to outp utandotherin Borrow Bout ion take $\mathrm{S}=0$. C7483asasub ally taking com adder/ subtr	ersetfrom C4 =1,Applyt fB). as shown	B1toB4,on heBinput in the truth

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $26 / 71$	

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 27 / 71	

EC
Prepared by
Checked by Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 28 / 71	

EC
Prepared by
Checked by Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 29/71	

				Tab											
			Input	ata A			put	ata				trac			
		A4	A3	A2	A1	B4	в3	B2	B1	Bout	S4	S3	S2	S1	
		1	0	0	0	0	0	1	0	0	0	1	1	0	
		1	0	0	0	1	0	0	0	0	0	0	0	0	
		0	0	1	0	1	0	0	0	1	1	0	1	0	
		0	0	0	1	0	1	1	1	1	1	0	1	0	
		1	0	1	0	1	0	1	1	1	1	1	1	1	
		0	1	1	0	0	0	1	1	0	0	0	1	1	
		1	1	1	0	1	1	1	1	1	1	1	1	1	
		1	0	1	0	1	1	0	1	1	1	1	0	1	
		Not	Bout	1 for	<B;	Bo	0 f	A>B							

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $30 / 71$	

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 31 / 71	

		$\xrightarrow{-\mathrm{A}_{4} \mathrm{~A}_{-3} \mathrm{~A}_{2} \mathrm{~A}_{1}^{1}=}$ The end around carry is disregarded $\xrightarrow[(0)]{(1111 \rightarrow}$ (2's complement) of $+1=0001$ $\mathrm{C} 0 \oplus \mathrm{C} 4=\text { Bout }=1$
10	Results \&Analysis	Do the calculations and compare with truthtable
11	Application Areas	CPLD applications and VHDL circuits and devices
12	Remarks	
13	Faculty Signature with Date	

Experiment 04 : Comparator

-	Experiment No.:	4	Marks	Date Planned	Date Conducted	
1	Title	Comparator				
2	Course Outcomes	Evaluate the performance of 4-bit magnitude comparator using 7485 IC				
3	Aim	To realize 4 bit magnitude comparator using IC 7485				
4	Material / Equipment Required		IC 7485			
5	Theory, Formula, Principle, Concept					
6	Procedure, Program, Activity, Algorithm, Pseudo Code		1.V 2.M 3.Sw 4.Ap 5.W	ingofthe logic ctions as per s as per the table for an	e circuit di	agrams.

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $32 / 71$	

		6. Connect pin16 to $\mathrm{V}_{c \mathrm{c}}$ andpin 8 to GNDfor the ICs. 7.Apply the two inputs asshown; making surethatthe MSB and LSBis correctly connected. 8.Outputs arerecorded at pin $2(A<B)$, pin $4(A>B)$, pin $3(A=B)$ pins andare verified as being according to thetruth table.
	Block, Circuit, Diagrale Diagram, Reaction Equation, Expected Graph	5-Bit comparator using IC 7485 PinDiagram:

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 33 / 71	

EC

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date: $18-10-2019$
Title:	Course Lab Manual	Page: $34 / 71$

9	Sample Calculations	
10	Results \&Analysis	Compare the output with trainer kit
11	Application Areas	Generally, in electronics, the comparatoris used to compare two voltages or currents
12	Remarks	
13	Faculty Signature with Date	

Experiment 05 : Multiplexer

-	Experiment No.:	5	Marks	Date Planned	Date Conducted	
1	Title	Multiplexer				
2	Course Outcomes	Realize 4:1 mux \&8:1 mux and Analyze the both				
3	Aim	To realize- Adder \&Subtractor using IC 74153- 3 variable function using IC 74151 (8:1 mux)				
4	Material / Equipment Required	IC74151,IC 74153, IC 7400, IC 7420, IC74138, IC7404,IC7408, IC7432 etc				
5	Theory, \quad Formula, Principle,	For mux using lc 74151				
6	ProcedurerProgram, Activity, Algorithm, Pseudo Code	A.For MUXIC 74153 1.The Pin [16] isconnectedto + Vcc andPin[8]is connectedto ground. 2.The inputsare appliedeither to ' A 'input or ' B ' input. 3.IfMUX'A'hastobeinitialized, E_{A} ismadelowandifMUX' B^{\prime} hastobe initialized, $\mathrm{E}_{\mathrm{B} \text { is }}$ madelow. 4.Basedontheselectionlinesoneoftheinputswillbeselectedatth				

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 35 / 71	

EC
Prepared by Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $36 / 71$	

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 37 / 71	

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $38 / 71$	

		Truth	Tables for	Full Adder/Su	tractor	4153		
			Input	uts	Full A	Outputs	Full Su	Outputs
		A	- B	$3{ }^{3} \quad \mathrm{C}_{\mathrm{kg}} / \mathrm{B}_{\mathrm{in}}$	S	$\mathrm{C}_{\text {out }}$	D	$\mathbf{B}_{\text {out }}$
		0	0	0	0	0	0	0
		0	0	1	1	0	1	1
		0		0	1	0	1	1
		0	1	1	0	1	0	1
		1	0	0	1	0	1	0
		1	0	1	0	1	0	0
		1	1	0	0	1	0	0
		1	1	1	1	1	1	1
9	Sample Calculations							
10	Results \&Analysis	compare	e with truth	h tables				
11	Application Areas	- Com	mmunicatio	ion System for	he proc	data tran	mission.	
12	Remarks							
13	Faculty Signature with Date							

EC
Prepared by
Checked by
Approved

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019
Title:	Course Lab Manual	Page: 39 / 71

Experiment 06 : Decoder

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $40 / 71$	

EC
Prepared by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019
Title:	Course Lab Manual	Page: $41 / 71$

Experiment 07 : sTUDY OF FLIP-FLOPS

-	Experiment No.:	7	Marks	Date Planned	Date Conducted	
1	Title	Study of flip flops				
2	Course Outcomes	Realize the operation of master slaveJK, D \& T flip-flop.				
3	Aim	Tostudy and verify the truthtables for master slaveJK, D \&T flipflop.				
4	Material / Equipment Required	IC 7410, IC 7400, etc.				
5	Theory, Formula, Principle, Concept	Lab Manual				
6	Procedurer \quad Program, Activity, Pseudo Code	1.Make theconnections as shown in the respectivecircuitdiagrams. 2.Apply inputs as shown in the respective truth tables, for each ofthe flipflop circuits. 3.Checktheoutputsofthecircuits;verifythattheymatchthatoftherespectivetr uth tables.				
7	Block, Circuit, Model	A.J-K Master-Slave Flip-Flop				

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 42 / 71	

EC
Prepared by Checked by Approved

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019
Title:	Course Lab Manual	Page: $43 / 71$

EC
Prepared by
Checked by
Approved

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date: $18-10-2019$
Title:	Course Lab Manual	Page: 44 / 71

		B. T-Type Flip-Flop Truth Table :									
			Preset	-	Clear		T		Clock	Q_{n+1}	$\overline{Q_{n+1}}$
			1	,	1		0		Ω	Qn	$\overline{\mathrm{On}}$
			1		1		1		Ω	$\overline{\mathrm{On}}$	On
		C.D-Type Flip-Flop: Truth Table:									
		Preset		lear		D		Clock		Q_{n+1}	Q_{n+1}
		1		1		0		st		0	1
		1		1		1		st		1	0
9	Sample Calculations										
10	Results \&Analysis	Compare with truth table - Master slave JK , D \& T flip flop arerealised and verified.									
11	Application Areas	- main components of sequential circuits, storing of binary data, counter, transferring binary data from one location to other									
12	Remarks										
13	Faculty Signature with Date										

Experiment 08 : study of shift registers

-	Experiment No.:	8	Marks		Date Planned		Date Conducted
1	Title	Study of shift registers					
2	Course Outcomes	Understand the operation of shift registers					

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $45 / 71$	

3	Aim	To study IC 74S95, and the realization of SIPO, SISO, PISO, PIPO ,RingCounter andJohnsonCounteroperations usingthe same.
4	Material / Equipment Required	IC 7495, IC 7495, IC 7404, etc.
5	Theory, Thinciple, Concept	
6	ProcedurerProgram, Activity, Algorithm, Pseudo Code	A.Serial In-Parallel Out(Left Shift): 1. Make theconnections as shown in the respectivecircuitdiagram. 2. Makesurethe7495isoperatinginParallelmodebyensuringPin6(ModeM) issetto HIGH, and connectclock input to Pin 8 (CIk 2). 3. Applythefirstdataatpin5(D)andapplyoneclockpulse.We observethat this data appears at pin $10\left(\mathrm{Q}_{0}\right)$. 4. Now,applytheseconddataatD.Applyaclockpulse.Wenowobserv ethat theearlier data is shiftedfrom Q_{0} to Q_{c}, and the new data appears at Q_{0}. 5. Repeat theearlier step to enterdata,untilall bitsare enteredone by one. 6. Attheendofthe $4^{\text {th }}$ clockpulse,wenoticethatall4bitsareavailableatthe paralleloutput pins $Q_{A}(M S B), Q_{s}, Q_{c}, Q_{0}(L S B)$.

EC
Prepared by Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $46 / 71$	

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1 .F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $47 / 71$	

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $48 / 71$	

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $49 / 71$	

		3. Apply the 4data bits asinput to pinsA, B, C, D. 4. Apply one clock pulse at Clk 2 (Pin 8). 5. Notethatthe4bitdataatparallelinputsA,B,C,Dappearsatt heparallel outputpins $Q_{u}, Q_{s}, Q_{c}, Q_{s}$ respectively. Ring counter procedure: Procedure:- 1. Make theconnections as shown in the respectivecircuitdiagramfor the Ring Counter. 2. Apply an initial input (1000) attheA, B, C, D pins respectively. 3. Keep SelectMode = HIGH (1)and apply one clock pulse. 4. Next, SelectMode $=$ LOW (0)to switch to serialmode and apply clock pulses. 5. Observe theoutputafter each clock pulse, recordthe observations and verify that they match the expectedoutputs from the truthtable. 6. Repeat the same procedure as abovefor the Johnson Counter circuitand verify its operation.
7	Block, Circuit, Diagram, Model Equation, Rexpected Graph	IC7495 Pin Diagram:

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $50 / 71$	

EC
Prepared by Checked by Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $51 / 71$	

EC
Prepared by Checked by Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $52 / 71$	

EC
Prepared by
Checked by Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $53 / 71$	

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $54 / 71$	

EC
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $55 / 71$	

EC
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date: 18-10-2019	
Title:	Course Lab Manual	Page: $56 / 71$	

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $57 / 71$	

EC
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $58 / 71$	

EC
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $59 / 71$	

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $60 / 71$	

EC
Prepared by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 61 / 71	

EC
Prepared by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019
Title:	Course Lab Manual	Page: $62 / 71$

EC
Prepared by
Checked by
Approved

SKIT
Doc Code:
Title:

EC.SKIT.Ph5b1.F03
Teaching Process \quad Rev No.: 1.0

12	Remarks	
13	Faculty Signature with Date	

Experiment 09 : Counters

| - | Experiment No.: | Marks
 Date
 Conducted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Title | Mod-N asynchronous \&synchronous counters |

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 64 / 71	

Experiment 10 : Sequence Generator

| - | Experiment No.: | 10 | Marks | Date Planned | Date
 Conducted |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Title | Sequence Generator | | | |
| 2 | Course Outcomes | Realize the sequence generator and verify with truth table | | | |
| 3 | Aim | To design and study theoperation ofa Sequence Generator. | | | |
| 4 | Material / Equipment
 Required | IC 7495, IC 7486, etc. | | | |

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 65 / 71	

		4.Clock pulses are applied at CLK1 and the output values arenoted, and checked against the expected values fromthe truth table. 5.The functioning of the circuit asa sequence generator is verified.
	Block, Circuit, Diagram, Model Equation, Expecten Graph	

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 66 / 71	

EC

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: 67 / 71	

EC
Prepared by
Checked by
Approved

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $68 / 71$	

Experiment 11 : Simulate Full- Adder using simulation tool.

-	Experiment No.:	11	Marks	Date Planned	Date Conducted	
1	Title	Simulate Full- Adder using simulation tool.				
2	Course Outcomes	Analyze the full adder simulation process				
3	Aim	Full adder simulation using multisim software				
4	Material / EquipmentSoftware and simulation toolRequired					
5	Theory, Formula, Principle, Concept					
6	Procedure, Program, Activity, Algorithm, Pseudo Code 	- Go to start-all - click on national instruments - circuit design suit 11.0 - multisim 11.0 - click on evaluate - click on place, go to componets - click on groups - select TTL - select requires IC - click on place - select wires - Make the connections - Click on groups - indicators - probes - click o source - digital source - interactive digital constant				
7	Block, Circuit, Diagram, Model Equation, Expected Graph					

EC

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019
Title:	Course Lab Manual	Page: 69 / 71	

Experiment 12 : MOD-8 synchronous up/down Counter

-	Experiment No.:	12	Marks	Date Planned	Date Conducted	
1	Title	MOD 8 synchronous up/down Counter				
2	Course Outcomes	Distinguish between MOD-8 up \&downcounter operation				
3	Aim	To realize the Mod -8 synchronous up/downcounter circuit for different input combinations				
4	Material / Equipment IC 74193 Required	Theory, Formula, Principle, Concept				
5						

EC
Prepared by Checked by

SKIT		Teaching Process	Rev No.: 1.0
Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019	
Title:	Course Lab Manual	Page: $70 / 71$	

EC

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	EC.SKIT.Ph5b1.F03	Date:18-10-2019
Title:	Course Lab Manual	Page: 71/71	

13 Faculty Signature with Date

[^0]: Note : Remove "Table of Content" before including in CP Book

